
BD646, BD648, BD650, BD652 PNP SILICON POWER DARLINGTONS

BOURNS®

- Designed for Complementary Use with BD645, BD647, BD649 and BD651
- 62.5 W at 25°C Case Temperature
- 8 A Continuous Collector Current
- Minimum h_{FE} of 750 at 3V, 3 A

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING			VALUE	UNIT	
	BD646		-80		
Collector-base voltage ($I_E = 0$)	BD648	N/	-100	v	
	BD650	V _{CBO}	-120	v	
	BD652		-140		
Collector-emitter voltage ($I_B = 0$)	BD646		-60		
	BD648	N/	-80	V	
	BD650	V _{CEO}	-100		
	BD652		-120		
Emitter-base voltage			-5	V	
Continuous collector current			-8	A	
Peak collector current (see Note 1)			-12	A	
Continuous base current			-0.3	A	
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)			62.5	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3)			2	W	
Unclamped inductive load energy (see Note 4)			50	mJ	
Operating junction temperature range			-65 to +150	°C	
Storage temperature range			-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds			260	°C	

NOTES: 1. This value applies for $t_p \leq 0.3$ ms, duty cycle $\leq 10\%.$

2. Derate linearly to 150°C case temperature at the rate of 0.4 W/°C.

3. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = -5 mA, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = -20 V.

PRODUCT INFORMATION

MAY 1993 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice. 14U.com

BD646, BD648, BD650, BD652 PNP SILICON POWER DARLINGTONS

electrical characteristics at 25°C case temperature (unless otherwise noted)

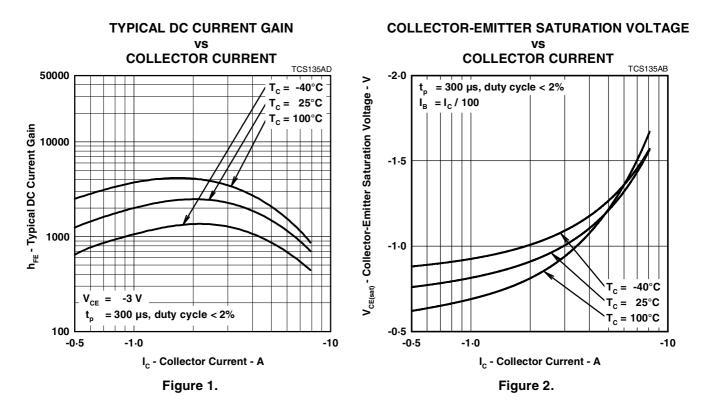
PARAMETER TEST CONDITIONS			MIN	ТҮР	MAX	UNIT			
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = -30 mA	I _B = 0	(see Note 5)	BD646 BD648	-60 -80			v
					BD650 BD652	-100 -120			
I _{CEO}	Collector-emitter cut-off current	$V_{CE} = -30 V$ $V_{CE} = -40 V$ $V_{CE} = -50 V$ $V_{CE} = -60 V$	$I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$		BD646 BD648 BD650 BD652			-0.5 -0.5 -0.5 -0.5	mA
I _{CBO}	Collector cut-off current	$V_{CB} = -60 V$ $V_{CB} = -80 V$ $V_{CB} = -100 V$ $V_{CB} = -120 V$	$I_{E} = 0$	$T_{C} = 150^{\circ}C$ $T_{C} = 150^{\circ}C$ $T_{C} = 150^{\circ}C$ $T_{C} = 150^{\circ}C$	BD646 BD648 BD650 BD652 BD646 BD648 BD648 BD650 BD652			-0.2 -0.2 -0.2 -0.2 -2.0 -2.0 -2.0 -2.0	mA
I _{EBO}	Emitter cut-off current	V _{EB} = -5 V	$I_{\rm C} = 0$	(see Notes 5 and 6)				-5	mA
h _{FE}	Forward current transfer ratio	V _{CE} = -3 V	I _C = -3 A	(see Notes 5 and 6)		750			
V _{CE(sat)}	Collector-emitter saturation voltage	$I_B = -12 \text{ mA}$ $I_B = -50 \text{ mA}$	Ũ	(see Notes 5 and 6)				-2 -2.5	V
V _{BE(sat)}	Base-emitter saturation voltage	I _B = -50 mA	I _C = -5 A	(see Notes 5 and 6)				-3	V
V _{BE(on)}	Base-emitter voltage	V _{CE} = -3 V	I _C = -3 A	(see Notes 5 and	16)			-2.5	V

NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300 \ \mu s$, duty cycle $\leq 2\%$.

6. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

thermal characteristics

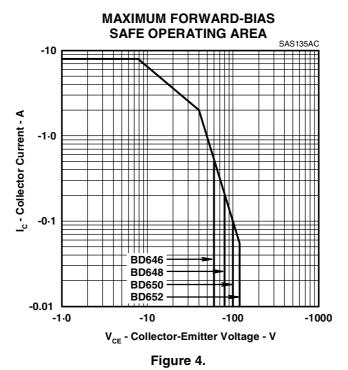
PARAMETER		MIN	ТҮР	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			2.0	°C/W
R _{θJA}	Junction to free air thermal resistance			62.5	°C/W



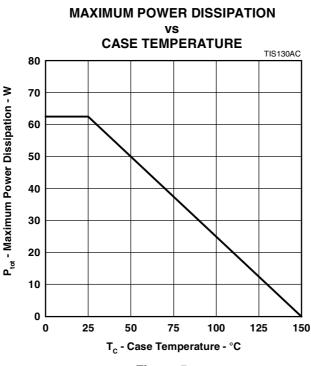
MAY 1993 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

TYPICAL CHARACTERISTICS

BASE-EMITTER SATURATION VOLTAGE vs **COLLECTOR CURRENT** TCS135AC -3.0 -40°C = V_{BE(sat)} - Base-Emitter Saturation Voltage - V тс 25°C T_c = = 100°C -2.5 -2.0 -1.5 -1.0 I_B $= I_c / 100$ = 300 μ s, duty cycle < 2% -0.5 -0.5 -1.0 -10 I_c - Collector Current - A


PRODUCT INFORMATION

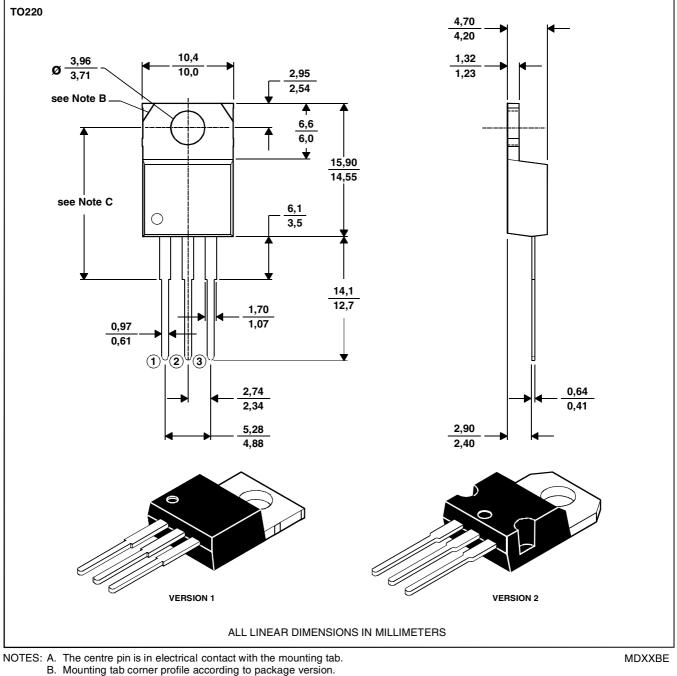
MAY 1993 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.


BD646, BD648, BD650, BD652 PNP SILICON POWER DARLINGTONS

MAXIMUM SAFE OPERATING REGIONS

PRODUCT INFORMATION eet4U.com

MAY 1993 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.


MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

BOURNS®

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

c. Typical fixing hole centre stand off height according to package version.

Version 1, 18.0 mm. Version 2, 17.6 mm.

PRODUCT INFORMATION

MAY 1993 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.